
www.umbc.edu

CMSC201
 Computer Science I for Majors

Lecture 19 – Recursion

Prof. Katherine Gibson

Based on slides from the book author, and previous iterations of the course

www.umbc.edu

Last Class We Covered

• Project 1 Details

• Classes

• Inheritance

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To introduce recursion

• To begin to learn how to “think” recursively

• To better understand the concept of stacks

4

www.umbc.edu

Introduction to Recursion

www.umbc.edu

M.C. Escher:

"Drawing Hands" (1948)

www.umbc.edu

What is Recursion?

• In computer science, recursion is a way of
thinking about and solving problems

• It’s actually one of the central ideas of CS

• Solving a problem using recursion means the
solution depends on solutions to smaller
instances of the same problem

7

www.umbc.edu

Recursive Procedures

• When creating a recursive procedure, there
are a few things we want to keep in mind:

–We need to break the problem into
smaller pieces of itself

–We need to define a “base case” to stop at

– The smaller problems we break down into
need to eventually reach the base case

8

www.umbc.edu

Normal vs Recursive Functions

• So far, we’ve had functions call other functions

– For example, main() calls the square() function

• A recursive function, however, calls itself

9

main()

square()

compute()

www.umbc.edu

Why Would We Use Recursion?

• In computer science, some problems are more easily
solved by using recursive methods

• For example:

– Traversing through a directory or file system

– Traversing through a tree of search results

– Some sorting algorithms recursively sort data

• For today, we will focus on the basic structure of
using recursive methods

www.umbc.edu

Simple Recursion Example
def compute(intInput):

 print(intInput)

 if (intInput > 2):

 compute(intInput-1)

def main():

 compute(50)

main()

This program
simply computes
from 50 down to 2.

This is where the recursion occurs.

You can see that the compute()
function calls itself.

www.umbc.edu

Visualizing Recursion

• To understand how recursion works, it helps to
visualize what’s going on.

• To help visualize, we will use a common concept
called the Stack.

• A stack basically operates like a container of trays in a
cafeteria. It has only two operations:

– Push: you can push something onto the stack.

– Pop: you can pop something off the top of the stack.

• Let’s see an example stack in action.

www.umbc.edu

Stacks

www.umbc.edu

Stacks
• The diagram below shows a stack over time.

• We perform two pushes and two pops.

Time: 0
Empty Stack

Time 1:
Push “2”

2

Time 2:
Push “8”

2

8

Time 3:
Pop: Gets 8

2

Time 4:
Pop: Gets 2

www.umbc.edu

Stacks

• In computer science, a stack is a last in, first out(LIFO)
abstract data type and data structure.

• A stack can have any abstract data type as an element, but is
characterized by only two fundamental operations, the push
and the pop.

• The push operation adds to the top of the list, hiding any
items already on the stack, or initializing the stack if it is
empty.

www.umbc.edu

Stacks

• The nature of the pop and push operations also
means that stack elements have a natural order.

• Elements are removed from the stack in the reverse
order to the order of their addition: therefore, the
lower elements are typically those that have been in
the list the longest.

www.umbc.edu

Stacks and Functions

• When you run a program, the computer
creates a stack for you.

• Each time you invoke a function, the function
is placed on top of the stack.

• When the function returns or exits, the
function is popped off the stack.

www.umbc.edu

Stacks and Functions

Time: 0
Empty Stack

Time 1:
Push: main()

main()

Time 2:
Push: square()

main()

square()

Time 3:
Pop: square()
returns a value.
method exits.

main()

Time 4:
Pop: main()
returns a value.
method exits.

This is called an activation record or stack
frame.

Usually, this actually grows downward.

www.umbc.edu

Stacks and Recursion
• Each time a function is called, you push the

function on the stack.

• Each time the function returns or exits, you pop
the function off the stack.

• If a function calls itself recursively, you just push
another copy of the function onto the stack.

• We therefore have a simple way to visualize how
recursion really works.

www.umbc.edu

Back to the Simple Recursion Program

def compute(intInput):

 print(intInput)

 if (intInput > 2):

 compute(intInput-1)

def main():

 compute(50)

main() Here’s the code again.
Now, that we
understand stacks, we
can visualize the
recursion.

www.umbc.edu

Stack and Recursion in Action

21

Inside compute(9):

print (intInput);  9

if (intInput > 2)

 compute(intInput-1);

Inside compute(8):

print (intInput);  8

if (intInput > 2)

 compute(intInput-1);

Inside compute(7):

print (intInput);  7

if (intInput > 2)

 compute(intInput-1);

Time: 0
Empty
Stack

Time 1:
Push: main()

main()

Time 2:
Push:
compute(9)

main()

compute(9)

Time 3:
Push:
compute(8)

main()

compute(9)

compute(8)

Time 4:
Push:
compute(7)

main()

compute(9)

compute(8)

compute(7)

After returning
from compute(2)
pop everything

…

www.umbc.edu

Defining Recursion

www.umbc.edu

Terminology

def f(n):

 if n == 1:

 return 1

 else:

 return f(n - 1)

"Useful" recursive functions have:

• at least one recursive case

• at least one base case
so that the computation terminates

base

case

recursive

case

www.umbc.edu

Recursion

def f(n):

 if n == 1:

 return 1

 else:

 return f(n + 1)

Find f(5)

We have a base case and a recursive case. What's wrong?

www.umbc.edu

Recursion

The recursive case

should call the function

on a simpler input,

bringing us closer and closer

to the base case.

www.umbc.edu

Recursion

def f(n):

 if n == 0:

 return 0

 else:

 return 1 + f(n - 1)

Find f(0)

Find f(1)

Find f(2)

Find f(100)

www.umbc.edu

Recursion

def f(n):

 if n == 0:

 return 0

 else:

 return n + f(n - 1)

f(3)

3 + f(2)

3 + 2 + f(1)

3 + 2 + 1 + f(0)

3 + 2 + 1 + 0

6

www.umbc.edu

Factorial

• 4! = 4 × 3 × 2 × 1 = 24

www.umbc.edu

Factorial

• Does anyone know the value of 9! ?

• 362,880

• Does anyone know the value of 10! ?

• How did you know?

www.umbc.edu

Factorial

• 9! = 9×8×7×6×5×4×3×2×1

• 10! = 10 × 9×8×7×6×5×4×3×2×1

• 10! = 10 × 9!

• n! = n × (n - 1)!

• That's a recursive definition!

www.umbc.edu

Factorial
def fact(n):
 return n * fact(n - 1)

fact(3)
3 × fact(2)
3 × 2 × fact(1)
3 × 2 × 1 × fact(0)
3 × 2 × 1 × 0 × fact(-1)
...

www.umbc.edu

Factorial

• What did we do wrong?

• What is the base case for factorial?

www.umbc.edu

Any Other Questions?

www.umbc.edu

Announcements

• Lab has been cancelled this week!

– Work on your project instead

• Project 1 is out

– Due by Tuesday, November 17th at 8:59:59 PM

– Do NOT procrastinate!

• Next Class: Recursion

34

